Permeability dependence study of the focused ultrasound-induced blood-brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI.
نویسندگان
چکیده
Blood-brain barrier opening using focused ultrasound and microbubbles has been experimentally established as a noninvasive and localized brain drug delivery technique. In this study, the permeability of the opening is assessed in the murine hippocampus after the application of focused ultrasound at three different acoustic pressures and microbubble sizes. Using dynamic contrast-enhanced MRI, the transfer rates were estimated, yielding permeability maps and quantitative K(trans) values for a predefined region of interest. The volume of blood-brain barrier opening according to the K(trans) maps was proportional to both the pressure and the microbubble diameter. A K(trans) plateau of ∼0.05 min(-1) was reached at higher pressures (0.45 and 0.60 MPa) for the larger sized bubbles (4-5 and 6-8 μm), which was on the same order as the K(trans) of the epicranial muscle (no barrier). Smaller bubbles (1-2 μm) yielded significantly lower permeability values. A small percentage (7.5%) of mice showed signs of damage under histological examination, but no correlation with permeability was established. The assessment of the blood-brain barrier permeability properties and their dependence on both the pressure and the microbubble diameter suggests that K(trans) maps may constitute an in vivo tool for the quantification of the efficacy of the focused ultrasound-induced blood-brain barrier opening.
منابع مشابه
Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening.
Focused ultrasound, in the presence of microbubbles, has been used non-invasively to induce reversible blood-brain barrier (BBB) opening in both rodents and non-human primates. This study was aimed at identifying the dependence of BBB opening properties on polydisperse microbubble (all clinically approved microbubbles are polydisperse) type and distribution by using a clinically approved ultras...
متن کاملA quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using MRI.
Focused ultrasound in conjunction with the systemic administration of microbubbles has been shown to open the blood-brain barrier (BBB) selectively, noninvasively and reversibly. In this study, we investigate the dependence of the BBB opening's reversibility on the peak-rarefactional pressure (0.30-0.60 MPa) as well as the microbubble size (diameters of 1-2, 4-5, or 6-8 μm) in mice using contra...
متن کاملFocused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging
Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did n...
متن کاملBlood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects
Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...
متن کاملMagnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents
BACKGROUND Focused ultrasound combined with microbubble injection is capable of locally and transiently enhancing the permeability of the blood-brain barrier (BBB). Magnetic resonance imaging (MRI) guidance enables to plan, monitor, and characterize the BBB disruption. Being able to precisely and remotely control the permeabilization location is of great interest to perform reproducible drug de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 66 3 شماره
صفحات -
تاریخ انتشار 2011